Web Information

21/11/2009 10:03

WHAT IS A INTERNET?

The Internet, sometimes called simply "the Net," is a worldwide system of computer networks - a network of networks in which users at any one computer can, if they have permission, get information from any other computer (and sometimes talk directly to users at other computers). It was conceived by the Advanced Research Projects Agency (ARPA) of the U.S. government in 1969 and was first known as the ARPANET. The original aim was to create a network that would allow users of a research computer at one university to be able to "talk to" research computers at other universities. A side benefit of ARPANet's design was that, because messages could be routed or rerouted in more than one direction, the network could continue to function even if parts of it were destroyed in the event of a military attack or other disaster.

Today, the Internet is a public, cooperative, and self-sustaining facility accessible to hundreds of millions of people worldwide. Physically, the Internet uses a portion of the total resources of the currently existing public telecommunication networks. Technically, what distinguishes the Internet is its use of a set of protocols called TCP/IP (for Transmission Control Protocol/Internet Protocol). Two recent adaptations of Internet technology, the intranet and the extranet, also make use of the TCP/IP protocol.

For many Internet users, electronic mail (e-mail) has practically replaced the Postal Service for short written transactions. Electronic mail is the most widely used application on the Net. You can also carry on live "conversations" with other computer users, using Internet Relay Chat (IRC). More recently, Internet telephony hardware and software allows real-time voice conversations.

The most widely used part of the Internet is the World Wide Web (often abbreviated "WWW" or called "the Web"). Its outstanding feature is hypertext, a method of instant cross-referencing. In most Web sites, certain words or phrases appear in text of a different color than the rest; often this text is also underlined. When you select one of these words or phrases, you will be transferred to the site or page that is relevant to this word or phrase. Sometimes there are buttons, images, or portions of images that are "clickable." If you move the pointer over a spot on a Web site and the pointer changes into a hand, this indicates that you can click and be transferred to another site.

Using the Web, you have access to millions of pages of information. Web browsing is done with a Web browser, the most popular of which are Microsoft Internet Explorer and Netscape Navigator. The appearance of a particular Web site may vary slightly depending on the browser you use. Also, later versions of a particular browser are able to render more "bells and whistles" such as animation, virtual reality, sound, and music files, than earlier versions.

HISTORY OF INTERNET.
History of the Internet
From Wikipedia, the free encyclopedia
Jump to: navigation, search
Question book-new.svg
    This article needs additional citations for verification.
Please help improve this article by adding reliable references. Unsourced material may be challenged and removed. (May 2009)
Commemorative plaque listing some of the early Internet pioneers

Before the wide spread of internetworking that led to the Internet, most communication networks were limited by their nature to only allow communications between the stations on the local network and the prevalent computer networking method was based on the central mainframe computer model. Several research programs began to explore and articulate principles of networking between physically separate networks, leading to the development of the packet switching model of digital networking. These research efforts included those of the laboratories of Donald Davies (NPL), Paul Baran (RAND Corporation), and Leonard Kleinrock at MIT and at UCLA. The research led to the development of several packet-switched networking solutions in the late 1960s and 1970s,[1] including ARPANET and the X.25 protocols. Additionally, public access and hobbyist networking systems grew in popularity, including unix-to-unix copy (UUCP) and FidoNet. They were however still disjointed separate networks, served only by limited gateways between networks. This led to the application of packet switching to develop a protocol for internetworking, where multiple different networks could be joined together into a super-framework of networks. By defining a simple common network system, the Internet Protocol Suite, the concept of the network could be separated from its physical implementation. This spread of internetworking began to form into the idea of a global network that would be called the Internet, based on standardized protocols officially implemented in 1982. Adoption and interconnection occurred quickly across the advanced telecommunication networks of the western world, and then began to penetrate into the rest of the world as it became the de-facto international standard for the global network. However, the disparity of growth between advanced nations and the third-world countries led to a digital divide that is still a concern today.

Following commercialization and introduction of privately run Internet service providers in the 1980s, and the Internet's expansion for popular use in the 1990s, the Internet has had a drastic impact on culture and commerce. This includes the rise of near instant communication by electronic mail (e-mail), text based discussion forums, and the World Wide Web. Investor speculation in new markets provided by these innovations would also lead to the inflation and subsequent collapse of the Dot-com bubble. But despite this, the Internet continues to grow.

Before the Internet
Question book-new.svg
    This section does not cite any references or sources.
Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed. (May 2009)

In the 1950s and early 1960s, prior to the widespread inter-networking that led to the Internet, most communication networks were limited in that they only allowed communications between the stations on the network. Some networks, had gateways or bridges between them, but these bridges were often limited or built specifically for a single use. One prevalent computer networking method was based on the central mainframe method, simply allowing its terminals to be connected via long leased lines. This method was used in the 1950s by Project RAND to support researchers such as Herbert Simon, at Carnegie Mellon University in Pittsburgh, Pennsylvania, when collaborating across the continent with researchers in Sullivan, Illinois, on automated theorem proving and artificial intelligence.
Three terminals and an ARPfb
Main articles: RAND and ARPANET

A fundamental pioneer in the call for a global network, J.C.R. Licklider, articulated the ideas in his January 1960 paper, Man-Computer Symbiosis.

    "A network of such [computers], connected to one another by wide-band communication lines [which provided] the functions of present-day libraries together with anticipated advances in information storage and retrieval and [other] symbiotic functions."
    —J.C.R. Licklider, [2]

In October 1962, Licklider was appointed head of the United States Department of Defense's Advanced Research Projects Agency, now known as DARPA, within the information processing office. There he formed an informal group within DARPA to further computer research. As part of the information processing office's role, three network terminals had been installed: one for System Development Corporation in Santa Monica, one for Project Genie at the University of California, Berkeley and one for the Compatible Time-Sharing System project at the Massachusetts Institute of Technology (MIT). Licklider's identified need for inter-networking would be made obvious by the apparent waste of resources this caused.

    "For each of these three terminals, I had three different sets of user commands. So if I was talking online with someone at S.D.C. and I wanted to talk to someone I knew at Berkeley or M.I.T. about this, I had to get up from the S.D.C. terminal, go over and log into the other terminal and get in touch with them. [...]

    I said, it's obvious what to do (But I don't want to do it): If you have these three terminals, there ought to be one terminal that goes anywhere you want to go where you have interactive computing. That idea is the ARPAnet."
    —Robert W. Taylor, co-writer with Licklider of "The Computer as a Communications Device", in an interview with the New York Times, [3]

Packet switching
Main article: Packet switching

At the tip of the internetworking problem lay the issue of connecting separate physical networks to form one logical network. During the 1960s, Paul Baran (RAND Corporation), produced a study of surviveable networks for the US military. Information transmitted across Baran's network would be divided into what he called 'message-blocks'. Independently, Donald Davies (National Physical Laboratory, UK), proposed and developed a similar network based on what he called packet-switching, the term that would ultimately be adopted. Leonard Kleinrock (MIT) developed mathematical theory behind this technology. Packet-switching provides better bandwidth utilization and response times than the traditional cicuit-switching technology used for telephony, particularly on resource-limited interconnection links.

Packet switching is a rapid store-and-forward networking design that divides messages up into arbitrary packets, with routing decisions made per-packet. Early networks used message switched systems that required rigid routing structures prone to single point of failure. This led Paul Baran's US Military funded research to focus on using message-blocks to include network redundancy,[4] which in turn led to the widespread urban legend that the Internet was designed to resist nuclear attack.[5][6]
Networks that led to the Internet
ARPANET
Main article: ARPANET
Len Kleinrock and the first IMP.[7]

Promoted to the head of the information processing office at DARPA, Robert Taylor intended to realize Licklider's ideas of an interconnected networking system. Bringing in Larry Roberts from MIT, he initiated a project to build such a network. The first ARPANET link was established between the University of California, Los Angeles and the Stanford Research Institute on 22:30 hours on October 29, 1969. By December 5, 1969, a 4-node network was connected by adding the University of Utah and the University of California, Santa Barbara. Building on ideas developed in ALOHAnet, the ARPANET grew rapidly. By 1981, the number of hosts had grown to 213, with a new host being added approximately every twenty days.[8][9]

ARPANET became the technical core of what would become the Internet, and a primary tool in developing the technologies used. ARPANET development was centered around the Request for Comments (RFC) process, still used today for proposing and distributing Internet Protocols and Systems. RFC 1, entitled "Host Software", was written by Steve Crocker from the University of California, Los Angeles, and published on April 7, 1969. These early years were documented in the 1972 film Computer Networks: The Heralds of Resource Sharing.

International collaborations on ARPANET were sparse. For various political reasons, European developers were concerned with developing the X.25 networks. Notable exceptions were the Norwegian Seismic Array (NORSAR) in 1972, followed in 1973 by Sweden with satellite links to the Tanum Earth Station and University College London.[10]
X.25 and public access
Main articles: X.25, Bulletin board system, and FidoNet

Based on ARPA's research, packet switching network standards were developed by the International Telecommunication Union (ITU) in the form of X.25 and related standards. While using packet switching, X.25 is built on the concept of virtual circuits emulating traditional telephone connections. In 1974, X.25 formed the basis for the SERCnet network between British academic and research sites, which later became JANET. The initial ITU Standard on X.25 was approved in March 1976.[11]

The British Post Office, Western Union International and Tymnet collaborated to create the first international packet switched network, referred to as the International Packet Switched Service (IPSS), in 1978. This network grew from Europe and the US to cover Canada, Hong Kong and Australia by 1981. By the 1990s it provided a worldwide networking infrastructure.[12]

Unlike ARPANET, X.25 was commonly available for business use. Telenet offered its Telemail electronic mail service, which was also targeted to enterprise use rather than the general email system of the ARPANET.

The first public dial-in networks used asynchronous TTY terminal protocols to reach a concentrator operated in the public network. Some networks, such as CompuServe, used X.25 to multiplex the terminal sessions into their packet-switched backbones, while others, such as Tymnet, used proprietary protocols. In 1979, CompuServe became the first service to offer electronic mail capabilities and technical support to personal computer users. The company broke new ground again in 1980 as the first to offer real-time chat with its CB Simulator. Other major dial-in networks were America Online (AOL) and Prodigy that also provided communications, content, and entertainment features. Many bulletin board system (BBS) networks also provided on-line access, such as FidoNet which was popular amongst hobbyist computer users, many of them hackers and amateur radio operators.[citation needed]
UUCP


    

In 1979, two students at Duke University, Tom Truscott and Jim Ellis, came up with the idea of using simple Bourne shell scripts to transfer news and messages on a serial line with nearby University of North Carolina at Chapel Hill. Following public release of the software, the mesh of UUCP hosts forwarding on the Usenet news rapidly expanded. UUCPnet, as it would later be named, also created gateways and links between FidoNet and dial-up BBS hosts. UUCP networks spread quickly due to the lower costs involved, ability to use existing leased lines, X.25 links or even ARPANET connections, and the lack of strict use policies (commercial organizations who might provide bug fixes) compared to later networks like CSnet and Bitnet. All connects were local. By 1981 the number of UUCP hosts had grown to 550, nearly doubling to 940 in 1984. - Sublink Network, operating since 1987 and officially founded in Italy in 1989, based its interconnectivity upon UUCP to redistribute mail and news groups messages throughout its Italian nodes (about 100 at the time) owned both by private individuals and small companies. Sublink Network represented possibly one of the first examples of the internet technology becoming progress through popular diffusion.
NPL
Main articles: NPL and DCN

In 1965, Donald Davies of the National Physical Laboratory in the UK proposed a national data network based on packet-switching. The proposal was not taken up nationally but by 1970 he had designed and built a packet-switched network to meet the needs of the multidisciplinary laboratory and prove the technology under operational conditions. [13]By 1976 12 computers and 75 terminal devices were attached and more were added until the network was replaced in 1986.
Merging the networks and creating the Internet
TCP/IP
Main article: Internet Protocol Suite
Map of the TCP/IP test network in January 1982

With so many different network methods, something was needed to unify them. Robert E. Kahn of DARPA and ARPANET recruited Vinton Cerf of Stanford University to work with him on the problem. By 1973, they had soon worked out a fundamental reformulation, where the differences between network protocols were hidden by using a common internetwork protocol, and instead of the network being responsible for reliability, as in the ARPANET, the hosts became responsible. Cerf credits Hubert Zimmerman, Gerard LeLann and Louis Pouzin (designer of the CYCLADES network) with important work on this design.[14]

The specification of the resulting protocol, RFC 675 - Specification of Internet Transmission Control Program, by Vinton Cerf, Yogen Dalal and Carl Sunshine, Network Working Group, December, 1974, contains the first attested use of the term internet, as a shorthand for internetworking; later RFCs repeat this use, so the word started out as an adjective rather than the noun it is today.

With the role of the network reduced to the bare minimum, it became possible to join almost any networks together, no matter what their characteristics were, thereby solving Kahn's initial problem. DARPA agreed to fund development of prototype software, and after several years of work, the first somewhat crude demonstration of a gateway between the Packet Radio network in the SF Bay area and the ARPANET was conducted. On November 22, 1977[15] a three network demonstration was conducted including the ARPANET, the Packet Radio Network and the Atlantic Packet Satellite network—all sponsored by DARPA. Stemming from the first specifications of TCP in 1974, TCP/IP emerged in mid-late 1978 in nearly final form. By 1981, the associated standards were published as RFCs 791, 792 and 793 and adopted for use. DARPA sponsored or encouraged the development of TCP/IP implementations for many operating systems and then scheduled a migration of all hosts on all of its packet networks to TCP/IP. On January 1, 1983, TCP/IP protocols became the only approved protocol on the ARPANET, replacing the earlier NCP protocol.[16]
ARPANET to several federal wide area networks: MILNET, NSI, and NSFNet
Main articles: ARPANET and NSFNet

After the ARPANET had been up and running for several years, ARPA looked for another agency to hand off the network to; ARPA's primary mission was funding cutting edge research and development, not running a communications utility. Eventually, in July 1975, the network had been turned over to the Defense Communications Agency, also part of the Department of Defense. In 1983, the U.S. military portion of the ARPANET was broken off as a separate network, the MILNET. MILNET subsequently became the unclassified but military-only NIPRNET, in parallel with the SECRET-level SIPRNET and JWICS for TOP SECRET and above. NIPRNET does have controlled security gateways to the public Internet.

The networks based around the ARPANET were government funded and therefore restricted to noncommercial uses such as research; unrelated commercial use was strictly forbidden. This initially restricted connections to military sites and universities. During the 1980s, the connections expanded to more educational institutions, and even to a growing number of companies such as Digital Equipment Corporation and Hewlett-Packard, which were participating in research projects or providing services to those who were.
BBN Technologies TCP/IP internet map early 1986

Several other branches of the U.S. government, the National Aeronautics and Space Agency (NASA), the National Science Foundation (NSF), and the Department of Energy (DOE) became heavily involved in Internet research and started development of a successor to ARPANET. In the mid 1980s, all three of these branches developed the first Wide Area Networks based on TCP/IP. NASA developed the NASA Science Network, NSF developed CSNET and DOE evolved the Energy Sciences Network or ESNet.

In 1984 NSF developed CSNET exclusively based on TCP/IP. CSNET connected with ARPANET using TCP/IP, and ran TCP/IP over X.25, but it also supported departments without sophisticated network connections, using automated dial-up mail exchange. This grew into the NSFNet backbone, established in 1986, and intended to connect and provide access to a number of supercomputing centers established by the NSF.[17]
Transition towards the Internet

The term "internet" was adopted in the first RFC published on the TCP protocol (RFC 675:[18] Internet Transmission Control Program, December 1974) as an abbreviation of the term internetworking and the two terms were used interchangeably. In general, an internet was any network using TCP/IP. It was around the time when ARPANET was interlinked with NSFNet in the late 1980s, that the term was used as the name of the network, Internet,[19] being a large and global TCP/IP network.

As interest in wide spread networking grew and new applications for it were developed, the Internet's technologies spread throughout the rest of the world. The network-agnostic approach in TCP/IP meant that it was easy to use any existing network infrastructure, such as the IPSS X.25 network, to carry Internet traffic. In 1984, University College London replaced its transatlantic satellite links with TCP/IP over IPSS.[20]

Many sites unable to link directly to the Internet started to create simple gateways to allow transfer of e-mail, at that time the most important application. Sites which only had intermittent connections used UUCP or FidoNet and relied on the gateways between these networks and the Internet. Some gateway services went beyond simple e-mail peering, such as allowing access to FTP sites via UUCP or e-mail.

Finally, the Internet's remaining centralized routing aspects were removed. The EGP routing protocol was replaced by a new protocol, the Border Gateway Protocol (BGP), in order to allow the removal of the NSFNet Internet backbone network. In 1994, Classless Inter-Domain Routing was introduced to support better conservation of address space which allowed use of route aggregation to decrease the size of routing tables.[21] The picture on the right hand side shows a system made with the help of a high-tech company called BBN (Bolt, Beranek, and Newman)the founders of the company.
TCP/IP becomes worldwide
CERN, the European Internet, the link to the Pacific and beyond

Between 1984 and 1988 CERN began installation and operation of TCP/IP to interconnect its major internal computer systems, workstations, PCs and an accelerator control system. CERN continued to operate a limited self-developed system CERNET internally and several incompatible (typically proprietary) network protocols externally. There was considerable resistance in Europe towards more widespread use of TCP/IP and the CERN TCP/IP intranets remained isolated from the Internet until 1989.

In 1988 Daniel Karrenberg, from CWI in Amsterdam, visited Ben Segal, CERN's TCP/IP Coordinator, looking for advice about the transition of the European side of the UUCP Usenet network (much of which ran over X.25 links) over to TCP/IP. In 1987, Ben Segal had met with Len Bosack from the then still small company Cisco about purchasing some TCP/IP routers for CERN, and was able to give Karrenberg advice and forward him on to Cisco for the appropriate hardware. This expanded the European portion of the Internet across the existing UUCP networks, and in 1989 CERN opened its first external TCP/IP connections.[22] This coincided with the creation of Réseaux IP Européens (RIPE), initially a group of IP network administrators who met regularly to carry out co-ordination work together. Later, in 1992, RIPE was formally registered as a cooperative in Amsterdam.

At the same time as the rise of internetworking in Europe, ad hoc networking to ARPA and in-between Australian universities formed, based on various technologies such as X.25 and UUCPNet. These were limited in their connection to the global networks, due to the cost of making individual international UUCP dial-up or X.25 connections. In 1989, Australian universities joined the push towards using IP protocols to unify their networking infrastructures. AARNet was formed in 1989 by the Australian Vice-Chancellors' Committee and provided a dedicated IP based network for Australia.

The Internet began to penetrate Asia in the late 1980s. Japan, which had built the UUCP-based network JUNET in 1984, connected to NSFNet in 1989. It hosted the annual meeting of the Internet Society, INET'92, in Kobe. Singapore developed TECHNET in 1990, and Thailand gained a global Internet connection between Chulalongkorn University and UUNET in 1992.[23]
Digital divide
Main article: Digital divide

While developed countries with technological infrastructures were joining the Internet, developing countries began to experience a digital divide separating them from the Internet. On an essentially continental basis, they are building organizations for Internet resource administration and sharing operational experience, as more and more transmission facilities go into place.
Africa

At the beginning of the 1990s, African countries relied upon X.25 IPSS and 2400 baud modem UUCP links for international and internetwork computer communications.

In August, 1995, InfoMail Uganda, Ltd., a privately held firm in Kampala now known as InfoCom (http://www.imul.com), and NSN Network Services of Avon, Colorado, sold in 1997 and now known as Clear Channel Satellite, established Africa's first native TCP/IP high-speed satellite Internet services. The data connection was originally carried by a C-Band RSCC Russian satellite which connected InfoMail's Kampala offices directly to NSN's MAE-West point of presence using a private network from NSN's leased ground station in New Jersey. InfoCom's first satellite connection was just 64kbps, serving a Sun host computer and twelve US Robotics dial-up modems.

In 1996 a USAID funded project, the Leland initiative, started work on developing full Internet connectivity for the continent. Guinea, Mozambique, Madagascar and Rwanda gained satellite earth stations in 1997, followed by Côte d'Ivoire and Benin in 1998.

Africa is building an Internet infrastructure. AfriNIC, headquartered in Mauritius, manages IP address allocation for the continent. As do the other Internet regions, there is an operational forum, the Internet Community of Operational Networking Specialists.[24]

There are a wide range of programs both to provide high-performance transmission plant, and the western and southern coasts have undersea optical cable. High-speed cables join North Africa and the Horn of Africa to intercontinental cable systems. Undersea cable development is slower for East Africa; the original joint effort between New Partnership for Africa's Development (NEPAD) and the East Africa Submarine System (Eassy) has broken off and may become two efforts.[25]
Asia and Oceania

The Asia Pacific Network Information Centre (APNIC), headquartered in Australia, manages IP address allocation for the continent. APNIC sponsors an operational forum, the Asia-Pacific Regional Internet Conference on Operational Technologies (APRICOT).[26]

In 1991, the People's Republic of China saw its first TCP/IP college network, Tsinghua University's TUNET. The PRC went on to make its first global Internet connection in 1995, between the Beijing Electro-Spectrometer Collaboration and Stanford University's Linear Accelerator Center. However, China went on to implement its own digital divide by implementing a country-wide content filter.[27]
Latin America

As with the other regions, the Latin American and Caribbean Internet Addresses Registry (LACNIC) manages the IP address space and other resources for its area. LACNIC, headquartered in Uruguay, operates DNS root, reverse DNS, and other key services.
Opening the network to commerce

The interest in commercial use of the Internet became a hotly debated topic. Although commercial use was forbidden, the exact definition of commercial use could be unclear and subjective. UUCPNet and the X.25 IPSS had no such restrictions, which would eventually see the official barring of UUCPNet use of ARPANET and NSFNet connections. Some UUCP links still remained connecting to these networks however, as administrators cast a blind eye to their operation.


World Internet Hosts: 1981 - 2009

During the late 1980s, the first Internet service provider (ISP) companies were formed. Companies like PSINet, UUNET, Netcom, and Portal Software were formed to provide service to the regional research networks and provide alternate network access, UUCP-based email and Usenet News to the public. The first commercial dialup ISP in the United States was The World (internet service provider), opened in 1989.[28] The first dial-up on the West Coast, Best Internet,[29] now Verio, opened in 1996.

In 1992, Congress allowed commercial activity on NSFNet with the Scientific and Advanced-Technology Act, 42 U.S.C. § 1862(g), permitting NSFNet to interconnect with commercial networks.[30] This caused controversy amongst university users, who were outraged at the idea of noneducational use of their networks.[citation needed] Eventually, it was the commercial Internet service providers who brought prices low enough that junior colleges and other schools could afford to participate in the new arenas of education and research.[citation needed]

By 1990, ARPANET had been overtaken and replaced by newer networking technologies and the project came to a close. In 1994, the NSFNet, now renamed ANSNET (Advanced Networks and Services) and allowing non-profit corporations access, lost its standing as the backbone of the Internet. Both government institutions and competing commercial providers created their own backbones and interconnections. Regional network access points (NAPs) became the primary interconnections between the many networks. The final commercial restrictions ended in May 1995 when the National Science Foundation ended its sponsorship of the Internet backbone.[31]
Internet Engineering Task Force
Main article: Internet Engineering Task Force

Requests for Comments (RFCs) started as memoranda addressing the various protocols that facilitate the functioning of the Internet and were previously edited by the late Dr. Postel as part of his IANA functions.[32]

The IETF started in January 1985 as a quarterly meeting of U.S. government funded researchers. Representatives from non-government vendors were invited starting with the fourth IETF meeting in October of that year.[citation needed] In 1992, the Internet Society, a professional membership society, was formed and the IETF was transferred to operation under it as an independent international standards body.[citation needed]
NIC, InterNIC, IANA and ICANN
Main articles: InterNIC, Internet Assigned Numbers Authority, and ICANN

The first central authority to coordinate the operation of the network was the Network Information Centre (NIC) at Stanford Research Institute (SRI) in Menlo Park, California. In 1972, management of these issues was given to the newly created Internet Assigned Numbers Authority (IANA). In addition to his role as the RFC Editor, Jon Postel worked as the manager of IANA until his death in 1998.

As the early ARPANET grew, hosts were referred to by names, and a HOSTS.TXT file would be distributed from SRI International to each host on the network. As the network grew, this became cumbersome. A technical solution came in the form of the Domain Name System, created by Paul Mockapetris. The Defense Data Network—Network Information Center (DDN-NIC) at SRI handled all registration services, including the top-level domains (TLDs) of .mil, .gov, .edu, .org, .net, .com and .us, root nameserver administration and Internet number assignments under a United States Department of Defense contract.[33] In 1991, the Defense Information Systems Agency (DISA) awarded the administration and maintenance of DDN-NIC (managed by SRI up until this point) to Government Systems, Inc., who subcontracted it to the small private-sector Network Solutions, Inc.[34][35]

Since at this point in history most of the growth on the Internet was coming from non-military sources, it was decided that the Department of Defense would no longer fund registration services outside of the .mil TLD. In 1993 the U.S. National Science Foundation, after a competitive bidding process in 1992, created the InterNIC to manage the allocations of addresses and management of the address databases, and awarded the contract to three organizations. Registration Services would be provided by Network Solutions; Directory and Database Services would be provided by AT&T; and Information Services would be provided by General Atomics.[36]

In 1998 both IANA and InterNIC were reorganized under the control of ICANN, a California non-profit corporation contracted by the US Department of Commerce to manage a number of Internet-related tasks. The role of operating the DNS system was privatized and opened up to competition, while the central management of name allocations would be awarded on a contract tender basis.
Globalization and 21st century
Main article: Internet governance

Since the 1990s, the Internet's governance and organization has been of global importance to commerce. The organizations which hold control of certain technical aspects of the Internet are both the successors of the old ARPANET oversight and the current decision-makers in the day-to-day technical aspects of the network. While formally recognized as the administrators of the network, their roles and their decisions are subject to international scrutiny and objections which limit them. These objections have led to the ICANN removing themselves from relationships with first the University of Southern California in 2000[37], and finally in September 2009, gaining autonomy from the US government by the ending of its longstanding agreements, although some contractual obligations with the Department of Commerce continue until at least 2011.[38][39][40] The history of the Internet will now be played out in many ways as a consequence of the ICANN organization.

In the role of forming standard associated with the Internet, the IETF continues to serve as the ad-hoc standards group. They continue to issue Request for Comments numbered sequentially from RFC 1 under the ARPANET project, for example, and the IETF precursor was the GADS Task Force which was a group of US government-funded researchers in the 1980s. Many of the group's recent developments have been of global necessity, such as the i18n working groups who develop things like internationalized domain names. The Internet Society has helped to fund the IETF, providing limited oversight.
Use and culture
E-mail and Usenet
Main articles: e-mail, Simple Mail Transfer Protocol, and Usenet

E-mail is often called the killer application of the Internet. However, it actually predates the Internet and was a crucial tool in creating it. E-mail started in 1965 as a way for multiple users of a time-sharing mainframe computer to communicate. Although the history is unclear, among the first systems to have such a facility were SDC's Q32 and MIT's CTSS.[41]

The ARPANET computer network made a large contribution to the evolution of e-mail. There is one report[42] indicating experimental inter-system e-mail transfers on it shortly after ARPANET's creation. In 1971 Ray Tomlinson created what was to become the standard Internet e-mail address format, using the @ sign to separate user names from host names.[43]

A number of protocols were developed to deliver e-mail among groups of time-sharing computers over alternative transmission systems, such as UUCP and IBM's VNET e-mail system. E-mail could be passed this way between a number of networks, including ARPANET, BITNET and NSFNet, as well as to hosts connected directly to other sites via UUCP. See the history of SMTP protocol.

In addition, UUCP allowed the publication of text files that could be read by many others. The News software developed by Steve Daniel and Tom Truscott in 1979 was used to distribute news and bulletin board-like messages. This quickly grew into discussion groups, known as newsgroups, on a wide range of topics. On ARPANET and NSFNet similar discussion groups would form via mailing lists, discussing both technical issues and more culturally focused topics (such as science fiction, discussed on the sflovers mailing list).
From gopher to the WWW
Main articles: History of the World Wide Web and World Wide Web

As the Internet grew through the 1980s and early 1990s, many people realized the increasing need to be able to find and organize files and information. Projects such as Gopher, WAIS, and the FTP Archive list attempted to create ways to organize distributed data. Unfortunately, these projects fell short in being able to accommodate all the existing data types and in being able to grow without bottlenecks.[citation needed]

One of the most promising user interface paradigms during this period was hypertext. The technology had been inspired by Vannevar Bush's "Memex"[44] and developed through Ted Nelson's research on Project Xanadu and Douglas Engelbart's research on NLS.[45] Many small self-contained hypertext systems had been created before, such as Apple Computer's HyperCard. Gopher became the first commonly-used hypertext interface to the Internet. While Gopher menu items were examples of hypertext, they were not commonly perceived in that way.

In 1989, while working at CERN, Tim Berners-Lee invented a network-based implementation of the hypertext concept. By releasing his invention to public use, he ensured the technology would become widespread.[46] For his work in developing the World Wide Web, Berners-Lee received the Millennium technology prize in 2004. One early popular web browser, modeled after HyperCard, was ViolaWWW.

A potential turning point for the World Wide Web began with the introduction[47] of the Mosaic web browser[48] in 1993, a graphical browser developed by a team at the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign (NCSA-UIUC), led by Marc Andreessen. Funding for Mosaic came from the High-Performance Computing and Communications Initiative, a funding program initiated by the High Performance Computing and Communication Act of 1991 also known as the Gore Bill .[49] Indeed, Mosaic's graphical interface soon became more popular than Gopher, which at the time was primarily text-based, and the WWW became the preferred interface for accessing the Internet. (Gore's reference to his role in "creating the Internet", however, was ridiculed in his presidential election campaign. See the full article Al Gore and information technology).

Mosaic was eventually superseded in 1994 by Andreessen's Netscape Navigator, which replaced Mosaic as the world's most popular browser. While it held this title for some time, eventually competition from Internet Explorer and a variety of other browsers almost completely displaced it. Another important event held on January 11, 1994, was The Superhighway Summit at UCLA's Royce Hall. This was the "first public conference bringing together all of the major industry, government and academic leaders in the field [and] also began the national dialogue about the Information Superhighway and its implications."[50]

24 Hours in Cyberspace, the "the largest one-day online event" (February 8, 1996) up to that date, took place on the then-active website, cyber24.com.[51][52] It was headed by photographer Rick Smolan.[53] A photographic exhibition was unveiled at the Smithsonian Institution's National Museum of American History on January 23, 1997, featuring 70 photos from the project.[54]

SOURCE:http://en.wikipedia.org/wiki/History_of_the_Internet

WHAT IS A NETWORK?

What is a Network?

A network consists of two or more computers that are linked in order to share resources (such as printers and CDs), exchange files, or allow electronic communications. The computers on a network may be linked through cables, telephone lines, radio waves, satellites, or infrared light beams.

The two basic types of networks include:

You may also see references to a Metropolitan Area Networks (MAN), a Wireless LAN (WLAN), or a Wireless WAN (WWAN).

Local Area Network

A Local Area Network (LAN) is a network that is confined to a relatively small area. It is generally limited to a geographic area such as a writing lab, school, or building. Rarely are LAN computers more than a mile apart.

In a typical LAN configuration, one computer is designated as the file server. It stores all of the software that controls the network, as well as the software that can be shared by the computers attached to the network. Computers connected to the file server are called workstations. The workstations can be less powerful than the file server, and they may have additional software on their hard drives. On many LANs, cables are used to connect the network interface cards in each computer; other LANs may be wireless. See the Topology, Cabling, and Hardware sections of this tutorial for more information on the configuration of a LAN.

Wide Area Network

Wide Area Networks (WANs) connect larger geographic areas, such as Florida, the United States, or the world. Dedicated transoceanic cabling or satellite uplinks may be used to connect this type of network.

Using a WAN, schools in Florida can communicate with places like Tokyo in a matter of minutes, without paying enormous phone bills. A WAN is complicated. It uses multiplexers to connect local and metropolitan networks to global communications networks like the Internet. To users, however, a WAN will not appear to be much different than a LAN.

Advantages of Installing a School Network

  • Speed. Networks provide a very rapid method for sharing and transferring files. Without a network, files are shared by copying them to memory cards or discs, then carrying or sending the discs from one computer to another. This method of transferring files (referred to as sneaker-net) can be very time-consuming.
  • Cost. Networkable versions of many popular software programs are available at considerable savings when compared to buying individually licensed copies.
  • Security. Files and programs on a network can be designated as "copy inhibit," so that you do not have to worry about illegal copying of programs. Also, passwords can be established for specific directories to restrict access to authorized users.
  • Centralized Software Management. One of the greatest benefits of installing a network at a school is the fact that all of the software can be loaded on one computer (the file server). This eliminates that need to spend time and energy installing updates and tracking files on independent computers throughout the building.
  • Resource Sharing. Sharing resources is another advantage of school networks. Most schools cannot afford enough laser printers, fax machines, modems, scanners, and CD players for each computer. However, if these or similar peripherals are added to a network, they can be shared by many users.
  • Electronic Mail. The presence of a network provides the hardware necessary to install an e-mail system. E-mail aids in personal and professional communication for all school personnel, and it facilitates the dissemination of general information to the entire school staff. Electronic mail on a LAN can enable students to communicate with teachers and peers at their own school. If the LAN is connected to the Internet, students can communicate with others throughout the world.
  • Flexible Access. School networks allow students to access their files from computers throughout the school. Students can begin an assignment in their classroom, save part of it on a public access area of the network, then go to the media center after school to finish their work. Students can also work cooperatively through the network.
  • Workgroup Computing. Collaborative software allows many users to work on a document or project concurrently. For example, educators located at various schools within a county could simultaneously contribute their ideas about new curriculum standards to the same document, spreadsheets, or website.

Disadvantages of Installing a School Network

  • Expensive to Install. Although a network will generally save money over time, the initial costs of installation can be prohibitive. Cables, network cards, routers, and software are expensive, and the installation may require the services of a technician.
  • Requires Administrative Time. Proper maintenance of a network requires considerable time and expertise. Many schools have installed a network, only to find that they did not budget for the necessary administrative support.
  • File Server May Fail. Although a file server is no more susceptible to failure than any other computer, when the files server "goes down," the entire network may come to a halt. When this happens, the entire school may lose access to necessary programs and files.
  • Cables May Break. The Topology chapter presents information about the various configurations of cables. Some of the configurations are designed to minimize the inconvenience of a broken cable; with other configurations, one broken cable can stop the entire network.
  • Must Monitor Security Issues. Wireless networks are becoming increasingly common; however, security can be an issue with wireless networks.

BASIC TYPE OF NETWORK?

Types of networks

Below is a list of the most common types of computer networks in order of scale.

 

Personal area network

Main article: Personal area network

A personal area network (PAN) is a computer network used for communication among computer devices close to one person. Some examples of devices that are used in a PAN are printers, fax machines, telephones, PDAs and scanners. The reach of a PAN is typically about 20-30 feet (approximately 6-9 meters), but this is expected to increase with technology improvements.

 

Local area network

Main article: Local area network

A local area network (LAN) is a computer network covering a small physical area, like a home, office, or small group of buildings, such as a school, or an airport. Current wired LANs are most likely to be based on Ethernet technology, although new standards like ITU-T G.hn also provide a way to create a wired LAN using existing home wires (coaxial cables, phone lines and power lines)[2].

For example, a library may have a wired or wireless LAN for users to interconnect local devices (e.g., printers and servers) and to connect to the internet. On a wired LAN, PCs in the library are typically connected by category 5 (Cat5) cable, running the IEEE 802.3 protocol through a system of interconnected devices and eventually connect to the Internet. The cables to the servers are typically on Cat 5e enhanced cable, which will support IEEE 802.3 at 1 Gbit/s. A wireless LAN may exist using a different IEEE protocol, 802.11b, 802.11g or possibly 802.11n. The staff computers (bright green in the figure) can get to the color printer, checkout records, and the academic network and the Internet. All user computers can get to the Internet and the card catalog. Each workgroup can get to its local printer. Note that the printers are not accessible from outside their workgroup.

 


Typical library network, in a branching tree topology and controlled access to resources

All interconnected devices must understand the network layer (layer 3), because they are handling multiple subnets (the different colors). Those inside the library, which have only 10/100 Mbit/s Ethernet connections to the user device and a Gigabit Ethernet connection to the central router, could be called "layer 3 switches" because they only have Ethernet interfaces and must understand IP. It would be more correct to call them access routers, where the router at the top is a distribution router that connects to the Internet and academic networks' customer access routers.

The defining characteristics of LANs, in contrast to WANs (wide area networks), include their higher data transfer rates, smaller geographic range, and lack of a need for leased telecommunication lines. Current Ethernet or other IEEE 802.3 LAN technologies operate at speeds up to 10 Gbit/s. This is the data transfer rate. IEEE has projects investigating the standardization of 40 and 100 Gbit/s.[3]

 

Campus area network

Main article: Campus area network

A campus area network (CAN) is a computer network made up of an interconnection of local area networks (LANs) within a limited geographical area. It can be considered one form of a metropolitan area network, specific to an academic setting.

In the case of a university campus-based campus area network, the network is likely to link a variety of campus buildings including; academic departments, the university library and student residence halls. A campus area network is larger than a local area network but smaller than a wide area network (WAN) (in some cases).

The main aim of a campus area network is to facilitate students accessing internet and university resources. This is a network that connects two or more LANs but that is limited to a specific and contiguous geographical area such as a college campus, industrial complex, office building, or a military base. A CAN may be considered a type of MAN (metropolitan area network), but is generally limited to a smaller area than a typical MAN. This term is most often used to discuss the implementation of networks for a contiguous area. This should not be confused with a Controller Area Network. A LAN connects network devices over a relatively short distance. A networked office building, school, or home usually contains a single LAN, though sometimes one building will contain a few small LANs (perhaps one per room), and occasionally a LAN will span a group of nearby buildings. In TCP/IP networking, a LAN is often but not always implemented as a single IP subnet.

 

Metropolitan area network

Main article: Metropolitan area network

A metropolitan area network (MAN) is a network that connects two or more local area networks or campus area networks together but does not extend beyond the boundaries of the immediate town/city. Routers, switches and hubs are connected to create a metropolitan area network.

 

Wide area network

Main article: Wide Area Network

A wide area network (WAN) is a computer network that covers a broad area (i.e. any network whose communications links cross metropolitan, regional, or national boundaries [1]). Less formally, a WAN is a network that uses routers and public communications links [1]. Contrast with personal area networks (PANs), local area networks (LANs), campus area networks (CANs), or metropolitan area networks (MANs), which are usually limited to a room, building, campus or specific metropolitan area (e.g., a city) respectively. The largest and most well-known example of a WAN is the Internet. A WAN is a data communications network that covers a relatively broad geographic area (i.e. one city to another and one country to another country) and that often uses transmission facilities provided by common carriers, such as telephone companies. WAN technologies generally function at the lower three layers of the OSI reference model: the physical layer, the data link layer, and the network layer.

 

Global area network

Main article: IEEE 802.20

A global area networks (GAN) specification is in development by several groups, and there is no common definition. In general, however, a GAN is a model for supporting mobile communications across an arbitrary number of wireless LANs, satellite coverage areas, etc. The key challenge in mobile communications is "handing off" the user communications from one local coverage area to the next. In IEEE Project 802, this involves a succession of terrestrial WIRELESS local area networks (WLAN).[4]

 

Virtual private network

Main article: Virtual Private Network

A virtual private network (VPN) is a computer network in which some of the links between nodes are carried by open connections or virtual circuits in some larger network (e.g., the Internet) instead of by physical wires. The link-layer protocols of the virtual network are said to be tunneled through the larger network when this is the case. One common application is secure communications through the public Internet, but a VPN need not have explicit security features, such as authentication or content encryption. VPNs, for example, can be used to separate the traffic of different user communities over an underlying network with strong security features.

A VPN may have best-effort performance, or may have a defined service level agreement (SLA) between the VPN customer and the VPN service provider. Generally, a VPN has a topology more complex than point-to-point.

A VPN allows computer users to appear to be editing from an IP address location other than the one which connects the actual computer to the Internet.

 

 

WHO OWNS THE INTERNET?

- no one.

 

WHAT IS A WEB SERVICE?

A web service (also webservice) is defined by the W3C as "a software system designed to support interoperable machine-to-machine interaction over a network. It has an interface described in a machine-processable format (specifically Web Services Description Language WSDL). Other systems interact with the web service in a manner prescribed by its description using SOAP messages, typically conveyed using HTTP with an XML serialization in conjunction with other web-related standards." [1] Web services are frequently just Internet Application Programming Interfaces (API) that can be accessed over a network, such as the Internet, and executed on a remote system hosting the requested services. Other approaches with nearly the same functionality as web services are Object Management Group's (OMG) Common Object Request Broker Architecture (CORBA), Microsoft's Distributed Component Object Model (DCOM) or Sun Microsystems's Java/Remote Method Invocation (RMI).

In common usage the term refers to clients and servers that communicate over the Hypertext Transfer Protocol (HTTP) protocol used on the web. Such services tend to fall into one of two camps: Big Web Services[citation needed] and RESTful Web Services. Such services are also referred to as web APIs.

"Big Web Services" use Extensible Markup Language (XML) messages that follow the Simple Object Access Protocol (SOAP) standard and have been popular with traditional enterprise. In such systems, there is often a machine-readable description of the operations offered by the service written in the Web Services Description Language (WSDL). The latter is not a requirement of a SOAP endpoint, but it is a prerequisite for automated client-side code generation in many Java and .NET SOAP frameworks (frameworks such as Spring, Apache Axis2 and Apache CXF being notable exceptions). Some industry organizations, such as the WS-I, mandate both SOAP and WSDL in their definition of a web service.

More recently, REpresentational State Transfer (RESTful) web services have been regaining popularity, particularly with Internet companies. By using the PUT, GET and DELETE HTTP methods, alongside POST, these are often better integrated with HTTP and web browsers than SOAP-based services. They do not require XML messages or WSDL service-API definit

Back